
1 True or False (10 points)

1. The stability property of a constant equilibrium will not be altered by
shifting the equilibrium point to the origin.

2. limt→∞ ḟ(t) = 0 implies that f(t) has a limit as t→∞, and vice versa.

3. If G(s) is a transfer function of a Hurwitz, minimum phase LTI SISO
system with relative degree equals to one, then G(s) must be SPR.

4. The function f(x) = x2 is not global Lipschitz since its derivative is un-
bounded.

5. For a linear time invariant system, the dimension of its state space repre-
sentation always equals to the order of its transfer function.

6. For indirect MRAC method with normalized adaptive law, since the con-
trol and adaptive laws are designed independently, the stability analysis
can also be done separately.

7. Consider a gradient-based adaptive law

θ̇ = γεφ, θ ∈ Rn

One necessary condition for θ converging to the true value θ∗ is that φ
must to be sufficiently rich of order n.

8. The equilibrium of a nonlinear system might be unstable, even if its lin-
earized counterpart is stable or uniformly stable.

9. For a linear time invariant system, if the equilibrium is globally asymp-
totically stable, then it also be globally exponentially stable, furthermore,
the dynamic matrix A must be Hurwitz.

10. For the control problem that cannot be solved by pole-placement con-
trol method when the plant model is known, one might consider to solve
it via adaptive pole-placement control method if the strongly coprime
assumption is satisfied.
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2 Stability Theorem (20 points)

Consider a system described by

ẋ1 = −ax1 + x1x2

ẋ2 = bx2 − x1x2 (1)

with x1, x2 ∈ R, a, b are non-zero constants. Define x = [x1 x2]>.

1. Calculate the equilibria of System (1).

2. Assume a = b = 1. Transform System (1) by shifting its nonzero equi-
librium to the origin, that is, write down the dynamic equation of y :=
x− x∗ ∈ R2 with x∗ representing the nonzero equilibrium.

3. Study the stability (in the sense of Lyapunov) of the equilibrium y∗ =
[0 , 0]> of the y-system (the system you just developed in question 2) via
Lyapunov indirect (first) method and its phase portrait.

4. Prove the following proposition via Lyapunov direct(second) theorem:
“The equilibrium x∗ = [0 , 0]> of System (1) is unstable if a < 0, b > 0”
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3 Parameter Estimation and Feedback Controller
Design (30 points)

Consider a mass-spring-damper system shown in Fig above whose dynamic can
be described by

k(y1 − y2) = u

k(y1 − y2) = mÿ2 + βẏ2

where k, β and m are positive constants denoting the spring, damper coefficients
and the mass, respectively. The gravity force is neglected.

1. Write the transfer function from u to y2, named T2(s), identify the high
frequency gain and poles of T2(s)

2. Assume only y1(t), y2(t) can be measured at each time instant and u(t) ∈
L∞, design a gradient-based (instantaneous cost function) online estima-
tor to identify the unknown parameters k, and prove that your estimates
k̂(t) is an L∞ signal.

3. Assume only y1(t), y2(t) can be measured at each time instant and u(t) ∈
L∞. Design a pure least-square estimator to identify the unknown pa-
rameter β and m. Choose a proper input signal u such that the estimates
m̂ and β̂ can asymptotically converge to their true values. Explain your
choice.

4. Say we have obtained that m = β = 1 and k = 2. Set u = −ẏ1 + v(t) and
let x := [y2 , ẏ2 , y1]>, v(t) , e = y2(t) denote the state, input, output of
the spring-mass-damper system. Identify the value of matrices A,B,C,D
in the following state-space realization{

ẋ = Ax+Bv
e = Cx+Dv

(2)

5. Consider the system model obtained in Question 4, assume only y2 can
be directly measured, design a proper observer-based feedback controller
in the form of v(t) = f(e), such that the closed-loop poles are assigned to
the roots of

A∗(s) = s3 + 4s2 + 7s+ 4 = 0

5



while the observation error will exponentially decay to zero at the rate of
−1,−2,−3.
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4 Adaptive Controller Desgin(40 points)

Consider a second-order system

ẋ = Ax+B[u(t) + d(t)], x(0) = x0 ∈ R2

where

A =

(
0 1
−ω2 −2ζω

)
B =

(
0
b

)
with ζ, ω and b are unknown positive constants, and

d(t) = αx>x+ β

is a state-dependent disturbance with unknown constants α and β.

1. Given state x available and assume ζ, ω, b and α, β are all known for now,
design a full-state feedback model reference controller u(t) = u∗(t) such
that the closed-loop trajectories are bounded and state x exponentially
track state xm of the following reference model

ẋm = Amxm +Bmr, xm(0) = 0 ∈ R2

where r is a uniformly bounded reference signal and

Am =

(
0 1
−3 −2

)
Bm =

(
0
2

)
.

(Hint, the control law should be a function of x and r)

2. Prove the effectiveness of the controller you just designed via the Lyapunov
equation of Am. (Hint: you need to proof boundedness and exponential
convergence)

3. Now, given ζ, ω, b and α, β are all unknown(note that sgn(b) > 0 is known),
design a direct model reference controller with an unnormalized
adaptive law to achieve the same control objectives stated in Question
1(Hint: invoke the idea of SPR- Lyapunov-based design, but don’t be too
obsessed with MYK lemma since we have access to the fullstate x in this
problem.)

4. Demonstrate the effectiveness of your design in Question 3 by showing the
boundedness of input signal and zero-convergence of the tracking error
e := xm − x.

7


