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Abstract: This paper studies the robust output regulation problem of uncertain single-input
single-output (SISO) discrete-time linear systems. To reject the effect of a sinusoidal disturbance
that only the frequency information is known prior, a novel strategy based on adaptive
feedforward control (AFC) is developed. Compared with existing regulators for uncertain
discrete-time systems, neither the knowledge on the sign of the real part or the imaginary part of
the transfer function at the frequency of interest (the so-called strictly positive real (SPR)-like
condition), nor persistence of excitation condition is required in this approach. Stability of the
closed-loop system is rigorously analyzed using small-gain theorem and Lyapunov-based stability
theory. Essentially, the proposed scheme guarantees that all signals of closed-loop system are
bounded while the output of system asymptotically converges to zero, which is demonstrated
by a numerical example.
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1. INTRODUCTION

As a fundamental topic in control theory, how to regulate
the output of a system to achieve tracking of a desired
trajectory (Ge et al. (2009); Jia et al. (2019)) or rejection
of external disturbances (Byrnes and Isidori (2000); Wei
et al. (2019)) has been extensively studied. Particularly,
due to its common appearance in practical applications
(Goodwin et al. (1986); Chen and Huang (2009); Chen
et al. (2020)), the problem of rejecting disturbances has
long been of special interest. There has been a substantial
amount of research on the disturbance rejection problem
for various plants, ranging from linear SISO systems (Es-
brook et al. (2013)) to nonlinear multi-input multi-output
(MIMO) systems (Zhong et al. (2020)), and even multi-
agent systems (Su and Huang (2012)).

Back to 70s, given an accurate model of the plant and
external signal, the problem is well-solved via the cele-
brated internal model (IM) principle (Francis and Won-
ham (1976)). However, once the accurate models are not
available, how to incorporate a proper adaptive mechanism
into the IM-based controller has drawn tremendous atten-
tion of researchers in control and signal processing com-
munity. For instance, as indicated in Chandrasekar et al.
(2006), a recursive-least-squares-based adaptive control
method is applied to disturbance rejection. Nevertheless,
this approach assumes that the plant model is in a steady
state and hence disregards the dynamic interactions be-
⋆ This work was supported in part by the Yangfan Program of
Shanghai, China, under Grant 21YF1429600.

tween the AFC scheme and the plant dynamics. A similar
result using an integral control is obtained and extended to
multi-frequency disturbances in Marino and Tomei (2015),
however, the design is only applicable under the SPR-
like condition. In recent work Wang et al. (2020), the
necessity of SPR-like condition is removed by a multiple-
model adaptive controller under the condition that the
frequency of disturbance is known.

Moreover, all aforementioned results are concerned with
the continuous-time systems. The study for the output reg-
ulation problem for discrete-time uncertain systems is in-
adequate in the literature. But discrete-time (or difference)
system control problem has its own interest and can find its
application in various industrial fields (Bai et al. (1988);
Fujii et al. (2020); Xie and Dubljevic (2021)). Applying
the direct discretization of corresponding continuous-time
controller to a discrete-time system in general will de-
grade the performance or even cause instability. As demon-
strated by Yamaura and Tomizuka (2000), a continuous-
time controller is discretized based on the pre-warped bi-
linear transformation, however, the stability of the closed-
loop system is not guaranteed. Thus, many continuous-
time methods can not be directly applied to discrete-time
systems in general.

This motivates a number of work focusing on the discrete-
time output regulation problem. In the case of known
plants, Åström and Wittenmark (2013) present a standard
linear control approach. Hoagg et al. (2008) approach a
Markov-parameter-based adaptive controller that does not
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require direct measurements of the disturbance signals,
while the plant needs to be minimal-phase and requires
relative degree to be known. Doré Landau et al. (2011)
extend adaptive regulators to the multivariable case. In
Aranovskiy and Freidovich (2013), a further research is
investigated to the case that the frequency of disturbance
is unknown via a modified AFC algorithm, however, the
plant must be precisely defined. In recent study Tomei
(2017), parameters, order and relative degree of the plant
model are unknown, yet the SPR-like condition must be
satisfied for each frequency of disturbance.

Without the critical SPR-like condition, none of above ap-
proaches can address a disturbance rejection problem for a
largely uncertain discrete-time system. Therefore, to relax
this condition, we further study output regulation problem
of uncertain discrete-time linear systems with unknown
order, relative degree, and parameters, under a sinusoidal
disturbance with known frequency and unknown ampli-
tude and phase. The main challenges stem from the setting
that only the frequency of disturbance is available and the
plant model considered is highly uncertain. Inspired by
the work Wang et al. (2020), we investigate problem in a
discrete-time setting. Note that, as mentioned previously,
a direct discritization of the controller in Wang et al.
(2020), can not stabilize the corresponding discrete-time
system. To address these difficulties, a novel AFC-based
regulator is proposed and the stability of the closed-loop
system is shown by employing the small-gain theorem and
Lyapunov-based stability theory in this note. Overall, the
contributions of this paper are summarized as follows:

i) removing the crucial SPR-like condition for output
regulation of uncertain discrete-time systems;

ii) estimating the unknown parameters by proposing a
non-minimal realization of closed-loop system and an
adaptive law;

iii) realizing complete cancellation of the disturbance in
the presence of large parametric model uncertainty.

The rest of the paper is organized as follows. In Section 2,
the problem to be addressed is precisely stated. In Section
3, a novel discrete-time adaptive regulator and an adaptive
law are proposed. In Section 4, the stability analysis is
described. The algorithm is tested and illustrated by a
numerical example in Section 5. The conclusion is drawn
in Section 6.

Notation: R and N denote the set of real numbers and the
set of natural number, respectively. ∥ · ∥ is the Euclidean
norm and ∥ · ∥L2/∞ denotes the L2/∞ norm for signals. I
denotes the identity matrix with the appropriate dimen-
sion. int(·) is the abbreviation for interior. ∆x(k) denotes
feedforward difference, i.e., ∆x(k) = x(k + 1) − x(k).
P ⊂ Rp is a given compact set.

2. PROBLEM FORMULATION

This paper addresses the output regulation problem of a
highly uncertain linear system with limited prior knowl-
edge of the exosystem. Specifically, we consider the follow-
ing uncertain discrete-time system

x(k + 1) = A(p)x(k) +B(p)[ud(k)− d(k)], x(0) = x0

y(k) = C(p)x(k),
(1)

where k ∈ N, x ∈ Rn, y ∈ R, ud ∈ R, d ∈ R represent
the state, the regulated output, the control input and the
exogenous input of the system. A(p) ∈ Rn×n, B(p) ∈ Rn×1

and C(p) ∈ R1×n are unknown matrices with uncertain
parameters p ∈ P. The transfer function for system (1) is
defined as H(z) = C(p)(zI −A(p))−1B(p).

The plant is affected by a sinusoidal disturbance d(k) =
ψ1 cos(ωdk) + ψ2 sin(ωdk), in which ωd is a known fre-
quency and ψ1, ψ2 collect the unknown parameters. Let
the disturbance d(k) be modeled as

v(k + 1) =

(
cos(ωd) sin(ωd)
− sin(ωd) cos(ωd)

)
v(k), v(0) =

(
ψ1

ψ2

)

d(k) = (1 0) v(k). (2)

Note that ωd = ωcT , ωc > 0 is a known frequency in
continuous-time and T is the sampling time. From now
on, we assume that ωd ∈ (0, π

2 ), without loss of generality.

The estimator of exosystem and the control input of plant
are considered as

v̂(k + 1) = Rv̂(k) +Gu(k), v̂(0) = v̂0
ud(k) = Γ v̂(k) (3)

where

R =

(
cos(ωd) sin(ωd)
− sin(ωd) cos(ωd)

)
, Γ = (1 0) , G =

(
1
0

)
.

Then the dynamics of system (1)-(3) can be expressed as

v(k + 1) = Rv(k), d(k) = Γv(k)

v̂(k + 1) = Rv̂(k) +Gu(k), ud(k) = Γ v̂(k)

x(k + 1) = A(p)x(k) +B(p)[ud(k)− d(k)]

y(k) = C(p)x(k).

(4)

Next, we state the following assumption that A(p) is a
Schur matrix (i.e., all its eigenvalues are contained in the
open unit disk), robustly with respect to p ∈ P.

Assumption 1. There exist constants 0 < cp0
< c̄p0

such

that the unique solution P0(p) ∈ Rn×n of the discrete-time
Lyapunov equation

A⊤(p)P0(p)A(p)− P0(p) = −I (5)

satisfies cp0
I ≤ P0(p) ≤ c̄p0I for all p ∈ P.

Remark 1. Assumption 1 is not conservative, actually
quite standard in the area of the Internal Model Prin-
ciple (IMP)-based output regulation, especially for those
focusing on disturbance rejection.

Then there exists a unique matrix Π(p) ∈ Rn×2 that
satisfies the Sylvester equation

Π(p)R = A(p)Π(p) +B(p)Γ. (6)

Since all the information from (1) that is relevant for
reconstructing d(k) is the steady-state response

yss(k) =− C(p)Π(p)v(k)

=− (Re{H(ejωd)} Im{H(ejωd)})v(k)
corresponding to ud(k) ≡ 0, the unknown parameter
vector is expressed by

ϑ⊤(p) := C(p)Π(p) = (Re{H(ejωd)} Im{H(ejωd)}).

The SPR-like condition is replaced by the following weaker
assumption, which is independent on the sign of the entries
of ϑ.

Assumption 2. The unknown parameter vector ϑ(p) sat-
isfies ϑ(p) ∈ intΘ for all p ∈ P with a compact set
Θ := {ϑ ∈ R2|α2

1 ≤ ϑ2
1 + ϑ2

2 ≤ α2
2} for given boundary

values 0 < α1 < α2.

Remark 2. Assumption 2 is weaker than SPR-like con-
dition because: First, it is independent on the sign of
the entries of ϑ(p). Hence, the sign of Re{H(ejωd)} and
sign of Im{H(ejωd)} can change over the frequency of
interest, which is not permitted in the SPR-like condition.
Secondly, for practical applications, one can always find
sufficiently small α1 and sufficiently large α2 to satisfy
this assumption.

The output regulation problem studied in this paper is
formally described as follows:

Problem 1. Under the Assumptions 1-2, develop a dy-
namic output feedback controller of the form

γ(k + 1) = f(γ(k), y(k)), γ(0) = γ0 ∈ Rm

ud(k) = h(γ(k), y(k))
(7)

such that all solutions of the closed-loop system (1), (2)
and (7) starting in all initial conditions x0 ∈ Rn, v0 ∈ R2,
γ0 ∈ Rm are bounded and limk→∞ y(k) = 0 holds for all
p ∈ P.

Remark 3. Note that only the output y is available under
our settings. Moreover, we tend to achieve global regula-
tion of the output.

3. DESIGN OF CONTROLLER AND ADAPTIVE
LAW

3.1 Controller Design and Non-minimal Realization

To decouple the exosystem from the plant, we utilize the
coordinate transformation ξ := v̂ − v and z := x−Π(p)ξ.
This transformation converts the system described in (4)
to an error system

z(k + 1) = A(p)z(k)−Π(p)Gu(k), z(0) = z0 ∈ Rn

ξ(k + 1) = Rξ(k) +Gu(k), ξ(0) = ξ0 ∈ R2

y(k) = C(p)z(k) + ϑ⊤(p)ξ(k).

(8)

Rewrite the auxiliary system

ξ(k + 1) = Rξ(k) +Gu(k)

ya(k) = ϑ⊤(p)ξ(k).
(9)

This is controllable and observable for all p ∈ P under
Assumption 2. Since the auxiliary output ya = y−C(p)z is
unavailable for measurement, a coordinate transformation
η := M−1ξ is required, where

M =
1

ϑ2
1 + ϑ2

2

(
ϑ1 −ϑ2

ϑ2 ϑ1

)
.

Consequently, the auxiliary system (9) can be expressed
in new coordinates as

η(k + 1) = Rη(k) + θ(k)u(k)

ya(k) = Γη(k)
(10)

where θ = (ϑ1 − ϑ2)
⊤. Note that α2

1 < ∥θ∥2 < α2
2 also

holds for the new unknown parameter vector θ owing to the
Assumption 2. A certainty-equivalence adaptive observer
for system (10) gives as

η̂(k + 1) = Rη̂(k) + θ̂(k)u(k)− εG[ŷa(k)− y(k)]

ŷa(k) = Γ η̂(k)
(11)

where θ̂ ∈ R2 is an estimate of θ whose estimation
algorithm will be designed later, and ε > 0 is a constant.
The certainty-equivalence control law is given by

u(k) = −εθ̂⊤(k)η̂(k). (12)

Thus, the closed-loop system in observer coordinates can
be written as

η̂(k + 1) = F (ε, θ̂)η̂(k)− εG[ŷa(k)− y(k)]

where F (ε, θ̂) := R − εθ̂θ̂⊤. The dynamics of observation
error η̃ := η̂ − η is given by the following equation

η̃(k + 1) = E(ε)η̃(k) + θ̃(k)u(k) + εGC(p)z(k)

ỹ(k) = Γ η̃(k)− C(p)z(k)
(13)

in which θ̃ := θ̂ − θ, ỹ := ŷa − y and E(ε) := R− εGΓ . In

order to determine a parameter adaptation law for θ̂(k),
the dynamics (13) is rewritten in a more suitable form as

specified in the lemma below, in which θ̃(k) is shifted to
the output equation.

Lemma 1. The closed-loop system (8), (10), (12) and (13)
can be converted to the non-minimal realization

η̂(k + 1) =F η̂(k)− εGθ̃⊤(k)η̂1(k)

+ εG[Γη2(k) + C(p)z(k)− Γη3(k)]

η̂1(k + 1) =E⊤η̂1(k)− εGθ̂⊤(k)η̂(k)

η2(k + 1) =Eη2(k) + ηa(k + 1)∆ θ̂(k)

ηa(k + 1) =Eηa(k)− εθ̂⊤(k)η̂(k)I

η3(k + 1) =Eη3(k) + εGC(p)z(k)

z(k + 1) =A(p)z(k) + εΠ(p)Gθ̂⊤(k)η̂(k)

y(k) =Γ (η̂(k) + η2(k)− η3(k))

− θ̃⊤(k)η̂1(k) + C(p)z(k)

(14)

where ∆ θ̂(k) is an adaptive law to be designed.

Proof. Invoking the Swapping lemma (Ioannou and Fi-
dan (2006)), system (13) can be decomposed into

ỹa(k) = Γ

k−1∑
j=0

u(j)Ek−j−1θ̃(j) (15)

ỹb(k) = εΓGC(p)

k−1∑
j=0

Ek−j−1z(j)− C(p)z(k). (16)

Starting with the subsystem (15), denote

Ψ(j) =

j−1∑
i=0

u(i)E−i ∈ R2×2.

We can derive the forward difference equation ∆Ψ(j) =
u(j)E−j , yielding

ỹa(k) =ΓEk−1
k−1∑
j=0

∆Ψ(j)θ̃(j).

Transforming the summation of products by

ỹa(k) =ΓEk−1
k−1∑
j=0

∆Ψ(j)θ̃(k)

− ΓEk−1
k−1∑
j=1

Ψ(j + 1)∆ θ̃(j).

(17)
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Assumption 2. The unknown parameter vector ϑ(p) sat-
isfies ϑ(p) ∈ intΘ for all p ∈ P with a compact set
Θ := {ϑ ∈ R2|α2

1 ≤ ϑ2
1 + ϑ2

2 ≤ α2
2} for given boundary

values 0 < α1 < α2.

Remark 2. Assumption 2 is weaker than SPR-like con-
dition because: First, it is independent on the sign of
the entries of ϑ(p). Hence, the sign of Re{H(ejωd)} and
sign of Im{H(ejωd)} can change over the frequency of
interest, which is not permitted in the SPR-like condition.
Secondly, for practical applications, one can always find
sufficiently small α1 and sufficiently large α2 to satisfy
this assumption.

The output regulation problem studied in this paper is
formally described as follows:

Problem 1. Under the Assumptions 1-2, develop a dy-
namic output feedback controller of the form

γ(k + 1) = f(γ(k), y(k)), γ(0) = γ0 ∈ Rm

ud(k) = h(γ(k), y(k))
(7)

such that all solutions of the closed-loop system (1), (2)
and (7) starting in all initial conditions x0 ∈ Rn, v0 ∈ R2,
γ0 ∈ Rm are bounded and limk→∞ y(k) = 0 holds for all
p ∈ P.

Remark 3. Note that only the output y is available under
our settings. Moreover, we tend to achieve global regula-
tion of the output.

3. DESIGN OF CONTROLLER AND ADAPTIVE
LAW

3.1 Controller Design and Non-minimal Realization

To decouple the exosystem from the plant, we utilize the
coordinate transformation ξ := v̂ − v and z := x−Π(p)ξ.
This transformation converts the system described in (4)
to an error system

z(k + 1) = A(p)z(k)−Π(p)Gu(k), z(0) = z0 ∈ Rn

ξ(k + 1) = Rξ(k) +Gu(k), ξ(0) = ξ0 ∈ R2

y(k) = C(p)z(k) + ϑ⊤(p)ξ(k).

(8)

Rewrite the auxiliary system

ξ(k + 1) = Rξ(k) +Gu(k)

ya(k) = ϑ⊤(p)ξ(k).
(9)

This is controllable and observable for all p ∈ P under
Assumption 2. Since the auxiliary output ya = y−C(p)z is
unavailable for measurement, a coordinate transformation
η := M−1ξ is required, where

M =
1

ϑ2
1 + ϑ2

2

(
ϑ1 −ϑ2

ϑ2 ϑ1

)
.

Consequently, the auxiliary system (9) can be expressed
in new coordinates as

η(k + 1) = Rη(k) + θ(k)u(k)

ya(k) = Γη(k)
(10)

where θ = (ϑ1 − ϑ2)
⊤. Note that α2

1 < ∥θ∥2 < α2
2 also

holds for the new unknown parameter vector θ owing to the
Assumption 2. A certainty-equivalence adaptive observer
for system (10) gives as

η̂(k + 1) = Rη̂(k) + θ̂(k)u(k)− εG[ŷa(k)− y(k)]

ŷa(k) = Γ η̂(k)
(11)

where θ̂ ∈ R2 is an estimate of θ whose estimation
algorithm will be designed later, and ε > 0 is a constant.
The certainty-equivalence control law is given by

u(k) = −εθ̂⊤(k)η̂(k). (12)

Thus, the closed-loop system in observer coordinates can
be written as

η̂(k + 1) = F (ε, θ̂)η̂(k)− εG[ŷa(k)− y(k)]

where F (ε, θ̂) := R − εθ̂θ̂⊤. The dynamics of observation
error η̃ := η̂ − η is given by the following equation

η̃(k + 1) = E(ε)η̃(k) + θ̃(k)u(k) + εGC(p)z(k)

ỹ(k) = Γ η̃(k)− C(p)z(k)
(13)

in which θ̃ := θ̂ − θ, ỹ := ŷa − y and E(ε) := R− εGΓ . In

order to determine a parameter adaptation law for θ̂(k),
the dynamics (13) is rewritten in a more suitable form as

specified in the lemma below, in which θ̃(k) is shifted to
the output equation.

Lemma 1. The closed-loop system (8), (10), (12) and (13)
can be converted to the non-minimal realization

η̂(k + 1) =F η̂(k)− εGθ̃⊤(k)η̂1(k)

+ εG[Γη2(k) + C(p)z(k)− Γη3(k)]

η̂1(k + 1) =E⊤η̂1(k)− εGθ̂⊤(k)η̂(k)

η2(k + 1) =Eη2(k) + ηa(k + 1)∆ θ̂(k)

ηa(k + 1) =Eηa(k)− εθ̂⊤(k)η̂(k)I

η3(k + 1) =Eη3(k) + εGC(p)z(k)

z(k + 1) =A(p)z(k) + εΠ(p)Gθ̂⊤(k)η̂(k)

y(k) =Γ (η̂(k) + η2(k)− η3(k))

− θ̃⊤(k)η̂1(k) + C(p)z(k)

(14)

where ∆ θ̂(k) is an adaptive law to be designed.

Proof. Invoking the Swapping lemma (Ioannou and Fi-
dan (2006)), system (13) can be decomposed into

ỹa(k) = Γ

k−1∑
j=0

u(j)Ek−j−1θ̃(j) (15)

ỹb(k) = εΓGC(p)

k−1∑
j=0

Ek−j−1z(j)− C(p)z(k). (16)

Starting with the subsystem (15), denote

Ψ(j) =

j−1∑
i=0

u(i)E−i ∈ R2×2.

We can derive the forward difference equation ∆Ψ(j) =
u(j)E−j , yielding

ỹa(k) =ΓEk−1
k−1∑
j=0

∆Ψ(j)θ̃(j).

Transforming the summation of products by

ỹa(k) =ΓEk−1
k−1∑
j=0

∆Ψ(j)θ̃(k)

− ΓEk−1
k−1∑
j=1

Ψ(j + 1)∆ θ̃(j).

(17)
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The first term of (17) can be represented by

η1(k + 1) = E⊤η1(k) +Gu(k), η1(0) = η10 ∈ R2

ỹa,1(k) = θ̃⊤(k)η1(k).

Note that Ψ(1) = 0, then the second term of (17) gives

ỹa,2 = Γ

k−1
j=0

Ek−j−1ηa(j + 1)∆ θ̃(j)

where ηa(j + 1) =
j

i=0 u(i)E
j−i ∈ R2×2 admits the

dynamics

ηa(k + 1) = Eηa(k) + u(k)I, ηa(0) = ηa0 ∈ R2×2.

Consequently, the second term of (17) satisfies the subse-
quent equations

η2(k + 1) = Eη2(k) + ηa(k + 1)∆ θ̂(k), η2(0) = η20 ∈ R2

ηa(k + 1) = Eηa(k) + u(k)I

ỹa,2(k) = Γη2(k)

where the estimation signal ∆ θ̂(k) is a time-varying pa-
rameter vector. Noticing ỹa = ỹa,1 − ỹa,2, we completely
obtain the discrete-time linear dynamics for the subsystem
(15) as follows

η1(k + 1) = E⊤η1(k) +Gu(k)

η2(k + 1) = Eη2(k) + ηa(k + 1)∆ θ̂(k)

ηa(k + 1) = Eηa(k) + u(k)I

ỹa(k) = θ̃⊤(k)η1(k)− Γη2(k).

Without loss of generality, we choose an observer signal η̂1
to substitute the state η1, which implies

η̂1(k + 1) = E⊤η̂1(k) +Gu(k), η̂1(0) = η̂10 ∈ R2.

The impulse response of subsystem (16) satisfies the
discrete-time linear equation

η3(k + 1) = Eη3(k) + εGC(p)z(k), η3(0) = η30 ∈ R2

ỹb(k) = Γη3(k)− C(p)z(k).

To conclude, we obtain the non-minimal realization of
(13). Together with (8), (10) and (12), the non-minimal
realization (14) is obtained, thus ending the proof.

3.2 Parameter Adaptation Law

After obtaining the non-minimum realization of the closed-
loop system, to finally facility the AFC-based controller
(12), now we focus on designing a parameter adaptation

law ∆ θ̂(k) = φ.

A general option of parameter adaptation law depending
on the available signals is given as

∆ θ̂(k) = P(θ̂(k), φ(η̂1, ỹ)), θ̂(0) ∈ intΘ

η̂1(k + 1) = E⊤η̂1(k) +Gu(k)

ỹ(k) = ŷa(k)− y(k)

(18)

in which θ̂ is updated with time and P(·) is an original

projection algorithm that ensures θ̂ ∈ Θ. The projection
operator P(·) is defined as

P(·) =




φ, θ̂(k) ∈ intΘ

φ, θ̂(k) ∈ Θ̄ and θ̂(k+) ∈ intΘ

0, otherwise.

(19)

Here, Θ̄ denotes the boundary of the compact set Θ. The
gradient-based unconstrained parameter adaptation law
(Ioannou and Fidan (2006)) is of the form

φ(η̂1, ỹ) = −ρε2
η̂1ỹ

m2
(20)

where ρ > 0 is a constant and the normalization signal

m2 := 1 + ∥η̂1∥2 + |ỹ|2 ensures that ∥∆ θ̂(k)∥ < ρε2.

To ensure the boundness of θ̂(k) and prove the forthcoming
stability analysis, we employ the multiple-model-based
switching mechanism introduced in Wang et al. (2020),
Section IV , where the non-convex set Θ is divided into
several convex sets, and the standard projection is imposed
on each subset. Due to the limitation of space, here we do
not present the detailed proof of this switching adaptive
law (has been shown in Wang et al. (2020), Section V ),

but one can easily verify that the estimate θ̂ given by such
an adaptive law verifies the following two propositions:

Proposition 1. The signal θ̂(·) satisfies θ̂(k) ∈ Θ and

∥∆ θ̂(k)∥ < ρε2 for all k ≥ 0.

Proposition 2. The normalization signal m(·) in the up-
date law (20) satisfies m(·) ∈ L∞.

Remark 4. The presented parameter estimation law (18)-

(20) ensures that θ̂(k) ∈ Θ and ∥∆ θ̂(k)∥ < ρε2 for
all k ≥ 0, which is essential to the subsequent stability
analysis of the closed-loop system.

4. STABILITY ANALYSIS

In this section, we analyze the stability of the system in a
closed-loop with the proposed controller and parameter
adaptation law. To achieve this, we recast the closed-
loop system (14) as the interconnection of the following
subsystems

Σ1 :


η̂(k + 1) = F η̂(k) + εGν1(k)

e1(k) = θ̂⊤(k)η̂(k)
(21)

Σ2 :



η2(k + 1) = Eη2(k) + ηa(k + 1)∆ θ̂(k)

ηa(k + 1) = Eηa(k)− εIν2(k)

e2(k) = Γη2(k)

(22)

Σ3 :



η3(k + 1) = Eη3(k) + εGC(p)z(k)

z(k + 1) = A(p)z(k) + εΠ(p)Gν3(k)

e3(k) = Γη3(k)− C(p)z(k)

(23)

Σ4 :


η̂1(k + 1) = E⊤η̂1(k)− εGν4(k)

e4(k) = η̂⊤1 (k)θ̃(k)
(24)

with inputs ν1 = u1 + e2 − e3, ν2 = e1, ν3 = e1, overall
input u1 = η̂⊤1 θ̃ and overall output y1 = e3 − e2, depicted
in Fig. 1.

Next, we will analyze the Lyapunov equations for the
closed-loop system. The results obtained from this analysis
will be used for subsequent stability analysis.

Lemma 2. There exist a scalar cε1 > 0 and constants
0 < cpe

< c̄pe such that the symmetric and positive definite

solution Pe(ε) ∈ R2×2 of the Lyapunov equation

E⊤(ε)Pe(ε)E(ε)− Pe(ε) = −εI (25)

satisfies cpe
I ≤ Pe(ε) ≤ c̄peI for all (θ, ε) ∈ Θ × (0, cε1).

Fig. 1. Interconnection of subsystems Σ1-Σ4.

Proof. The matrix E can be represented as

E(ε) = R− εGΓ =

(
cos(ωd)− ε sin(ωd)
− sin(ωd) cos(ωd)

)
.

It is Schur when 0 < ε < 2. Since det(E) = 1 − ε cos(ωd)
and ε is bounded, there exists an upper bound c̄e > 0 such
that E ≤ c̄eI. Let

Pe =

(
p1 p2
p3 p4

)
.

After solving Lyapunov equation (25), we get

p1 =− 4 sec(ωd)

ε2 − 4

p2 =p3 = −ε(ε cos(ωd)− 2) csc(ωd) sec(ωd)

ε2 − 4

p4 =
(ε3 cos(ωd)− 2− ε2) csc2(ωd) sec(ωd)

ε2 − 4

+
(2− ε2) cos(2ωd) csc

2(ωd) sec(ωd)

ε2 − 4
.

Using the fact that

det(Pe(ε)) = −ε2 csc(ωd)
2 + 4 sec(ωd)

2

ε2 − 4
and the spectrum of Pe satisfies

spec Pe(0) = { 1

cos(ωd)
,

1

cos(ωd)
}

we obtain that there exist a scalar cε1 = 2 and constants
0 < cpe

< c̄pe
such that cpe

I ≤ Pe(ε) ≤ c̄pe
I for all

(θ, ε) ∈ Θ × (0, cε1).

Lemma 3. There exist a scalar cε2 := min{cε1 , 2
α2

2
} and

constants 0 < cpf
< c̄pf

such that the symmetric and

positive definite solution Pf (ε, θ) ∈ R2×2 of the Lyapunov
equation

F⊤(ε, θ)Pf (ε, θ)F (ε, θ)− Pf (ε, θ) = −εθ⊤θI (26)

satisfies cpf
I ≤ Pf (θ, ε) ≤ c̄pf

I for all (θ, ε) ∈ Θ× (0, cε2),

where F (ε, θ) = R− εθθ⊤.

We will omit the proof of Lemma 3 as it follows a similar
procedure to Lemma 2.

The following propositions will provide the stability prop-
erties of the subsystems Σ1-Σ3 using dissipative systems
theory (Isidori (2000)).

Proposition 3. There exist γ1 > 0 and cε3 > 0 such that
system Σ1 is strictly dissipative with respect to the supply
rate q1(ν1, e1) = γ2

1 |ν1|2 − |e1|2 for all ε ∈ (0, cε3), with
quadratic, positive definite and decrescent storage function

W1(k, η̂) = 2ε−1η̂⊤(k)Pf (ε, θ̂(k))η̂(k).

Proof. First, the following preliminary result is needed.

Property 1. The gradient with respect to θ of the quadratic
form Qf (w) := w⊤Pf (ε, θ)w,w ∈ R2, satisfies ∇θQf (w) =
ε3(w⊤S1(ε, θ)w,w

⊤S2(ε, θ)w) for some matrix-valued func-
tions Si : (ε, θ) → R2×2, i = 1, 2, which are continuous and
bounded over Θ × (0, cε2).

Then a quantity l gives

l := max
θ̂∈Θ,ε∈(0,cε2 )

{∥S1(ε, θ̂)∥+ ∥S2(ε, θ̂)∥}.

Define the Lyapunov function candidate

V1(k, η̂) := η̂⊤(k)Pf (ε, θ̂(k))η̂(k) (27)

for all (θ̂(·), ε) ∈ Θ × (0, cε2). Evaluating ∆V1(k, η̂) along
the trajectories of system Σ1 yields

∆V1(k, η̂)

=η̂⊤(k + 1)Pf (k + 1)η̂(k + 1)− η̂⊤(k)Pf (k)η̂(k)

≤− ε(
α2
1

4
− lc̄2fε

2)∥η̂∥2 − ε

2
|e1|2

+ (4εα−2
1 c̄2pf

c̄2f + ε2c̄pf
)|ν1|2

where we have utilized Assumption 1, Lemma 3, Property
1 and Young’s inequality. Letting cε3 := min{cε2 , α1

2c̄f
√
l
},

it follows that

∆V1(k, η̂) ≤− ε

2
a(ε)∥η̂∥2 − ε

2
|e1|2

+
ε

2
(8α−2

1 c̄2pf
c̄2f + 2εc̄pf

)|ν1|2

for all (θ̂, ε) ∈ Θ × (0, cε3) and a(ε) :=
α2

1

2 − 2lc̄2fε
2 > 0.

Define a quadratic, positive definite and decrescent storage
function W1(k, η̂) := 2ε−1V1(k, η̂), which satisfies

∆W1(k) ≤ −|e1|2 − a(ε)∥η̂∥2 + γ2
1 |ν1|2

where γ2
1 := 8c̄2f c̄

2
pf
α−2
1 + 2εc̄pf

. Therefore, system Σ1

is strictly dissipative with respect to the supply rate
q1(ν1, e1) = γ2

1 |ν1|2 − |e1|2. As a result, under the given
conditions, system Σ1 is exponentially stable when ν1 = 0,
and has a finite L2-gain between ν1 and e1 which does not
exceed γ1, for any ε ∈ (0, cε3).

Proposition 4. There exists γ2 > 0 such that system
Σ2 is strictly dissipative with respect to the supply
rate q2(ν2, e2) = ε2γ2

2 |ν2|2 − |e2|2 for all ε ∈ (0, cε3),
with quadratic and positive definite storage function
W2(η2, ηa).

Proposition 5. There exists γ3 > 0 such that system Σ3

is strictly dissipative with respect to the supply rate
q3(ν3, e3) = ε2γ2

3 |ν3|2 − |e3|2 for all ε ∈ (0, cε3) and
all p ∈ P, with quadratic and positive definite storage
function W3(η3, z).

The proof of Proposition 4 and Proposition 5 can be found
in Appendix A and Appendix B, respectively.

The main result of the control performance is summarized
in the following theorem.

Theorem 1. Consider the discrete-time plant model (1)
and the exosystem (2) under Assumptions 1-2. There exist
positive constants cm and cρ such that Problem 1 can
be solved using the AFC-based method, consisting of (3),
(11), (12), (18) (19), and (20), for any ε ∈ (0, cm) and any
ρ ∈ (0, cρ).
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Fig. 1. Interconnection of subsystems Σ1-Σ4.

Proof. The matrix E can be represented as

E(ε) = R− εGΓ =

(
cos(ωd)− ε sin(ωd)
− sin(ωd) cos(ωd)

)
.
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p1 p2
p3 p4

)
.
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p1 =− 4 sec(ωd)

ε2 − 4

p2 =p3 = −ε(ε cos(ωd)− 2) csc(ωd) sec(ωd)

ε2 − 4

p4 =
(ε3 cos(ωd)− 2− ε2) csc2(ωd) sec(ωd)

ε2 − 4

+
(2− ε2) cos(2ωd) csc

2(ωd) sec(ωd)

ε2 − 4
.

Using the fact that

det(Pe(ε)) = −ε2 csc(ωd)
2 + 4 sec(ωd)

2

ε2 − 4
and the spectrum of Pe satisfies

spec Pe(0) = { 1

cos(ωd)
,

1

cos(ωd)
}
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0 < cpe

< c̄pe
such that cpe

I ≤ Pe(ε) ≤ c̄pe
I for all
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α2

2
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constants 0 < cpf
< c̄pf
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F⊤(ε, θ)Pf (ε, θ)F (ε, θ)− Pf (ε, θ) = −εθ⊤θI (26)
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I ≤ Pf (θ, ε) ≤ c̄pf
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where F (ε, θ) = R− εθθ⊤.
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α2
1

4
− lc̄2fε

2)∥η̂∥2 − ε

2
|e1|2

+ (4εα−2
1 c̄2pf

c̄2f + ε2c̄pf
)|ν1|2
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l
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for all (θ̂, ε) ∈ Θ × (0, cε3) and a(ε) :=
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2 > 0.

Define a quadratic, positive definite and decrescent storage
function W1(k, η̂) := 2ε−1V1(k, η̂), which satisfies

∆W1(k) ≤ −|e1|2 − a(ε)∥η̂∥2 + γ2
1 |ν1|2

where γ2
1 := 8c̄2f c̄
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pf
α−2
1 + 2εc̄pf

. Therefore, system Σ1

is strictly dissipative with respect to the supply rate
q1(ν1, e1) = γ2

1 |ν1|2 − |e1|2. As a result, under the given
conditions, system Σ1 is exponentially stable when ν1 = 0,
and has a finite L2-gain between ν1 and e1 which does not
exceed γ1, for any ε ∈ (0, cε3).

Proposition 4. There exists γ2 > 0 such that system
Σ2 is strictly dissipative with respect to the supply
rate q2(ν2, e2) = ε2γ2

2 |ν2|2 − |e2|2 for all ε ∈ (0, cε3),
with quadratic and positive definite storage function
W2(η2, ηa).

Proposition 5. There exists γ3 > 0 such that system Σ3

is strictly dissipative with respect to the supply rate
q3(ν3, e3) = ε2γ2

3 |ν3|2 − |e3|2 for all ε ∈ (0, cε3) and
all p ∈ P, with quadratic and positive definite storage
function W3(η3, z).

The proof of Proposition 4 and Proposition 5 can be found
in Appendix A and Appendix B, respectively.

The main result of the control performance is summarized
in the following theorem.

Theorem 1. Consider the discrete-time plant model (1)
and the exosystem (2) under Assumptions 1-2. There exist
positive constants cm and cρ such that Problem 1 can
be solved using the AFC-based method, consisting of (3),
(11), (12), (18) (19), and (20), for any ε ∈ (0, cm) and any
ρ ∈ (0, cρ).
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Proof. We begin by applying small-gain techniques (Isidori
(2000)) to analyze the interconnection properties of Σ1-
Σ3. Let ε ∈ (0, cε3). According to Propositions 3-5, we
obtain the following inequality

∥e1τ ∥L2 ≤ γ1∥u1τ ∥L2 + εγ1(γ2 + γ3)∥e1τ ∥L2 , τ ∈ R≥0.

Here, uτ (·) represents the truncation of the signal u(·)
over the time interval [0, τ ]. Additionally, we define cε4 :=
min{cε3 , 1

γ1(γ2+γ3)
}, and use it to establish that subsystems

Σ1-Σ3 form a small-gain theorem interconnection (with
respect to the L2-norm) for ε ∈ (0, cε4). Applying the
small-gain theorem, we obtain

∥y1τ ∥L2
≤ c̄ε∥u1τ ∥L2

, ∀ε ∈ (0, cε4), τ ∈ R≥0

where c̄ε :=
εγ1(γ2+γ3)

1−εγ1(γ2+γ3)
.

By using the results obtained above, we demonstrate that
the signal u1 belongs to L2. Define V4(k) =

1
2∥θ̃(k)∥

2 and
calculate the difference equation

∆V4(k) =
1

2
∥θ̃(k + 1)∥2 − 1

2
∥θ̃(k)∥2.

Note that ỹ = η̂⊤1 θ̃ + y1, letting cρ = 2
c2m

, then for all

ρ ∈ (0, cρ), it holds ρε
2 < 2, which leads to

V4(k)− V4(0) ≤
ρε2

2∥m∥2∞
(−

k−1∑
τ=0

|u1(τ)|2 +
k−1∑
τ=0

|y1(τ)|2).

From Proposition 2, we obtain
k−1∑
τ=0

|u1(τ)|2 ≤ 2∥m∥2∞
ρε2(1− c̄2ε)

V4(0) < ∞.

This implies that the signal u1 ∈ L2.

Finally, we derive that the trajectories of the closed-loop
system (14) belong to L∞ and limk→∞ y(k) = 0. This can
be achieved by recalling the fact that the storage function
W1(k, η̂) satisfies the dissipation inequality ∆W1(k) ≤
γ2
1 |ν1(k)|2 − |e1(k)|2, which is based on Proposition 3. Ac-

cumulating each side of this inequality along trajectories
of systems Σ1-Σ3 over the time interval [0, τ ], and utilizing
the results from Proposition 4 and Proposition 5, we can
obtain the following inequality

∥eiτ ∥L2
≤ εγi∥e1τ ∥L2

, i = 2, 3.

We conclude that

W1(τ, η̂(τ)) <W1(0, η̂(0)) + 3γ2
1∥u1τ ∥2

− (1− 3ε2γ2
1(γ

2
2 + γ2

3))∥e1τ ∥2.
After utilizing Lemma 3 and the small-gain theorem,

setting cm := min{cε4 ,
√
3

3γ1(γ2+γ3)
}, we get

∥η̂(τ)∥ ≤
√

ε

2cpf

max{
√

2c̄pf

ε
∥η̂(0)∥,

√
3γ1∥u1∥L2

}

for all τ ∈ R≥0 and ε ∈ (0, cm), then η̂(·) ∈ L∞
can be concluded. Since θ̂(·) ∈ Θ is a bounded signal
given in Proposition 1, we can also get e1(·) ∈ L∞.
Exponentially stability of systems Σ2, Σ3 and Σ4 implies
that all remaining state trajectories belong to L∞ as well.

Additionally, we note that the fact that u1(·) ∈ L2 implies
that η̂1(·) ∈ L∞ and ∆ η̂1(·) ∈ L∞ for all ε ∈ (0, cm). Using
the results of Proposition 1 and Proposition 2, we obtain

θ̂(·) ∈ L∞ and ∆ θ̂(·) ∈ L∞. Hence, it follows that u1(·) ∈
L2 ∩ L∞, ∆u1(·) ∈ L∞ and limk→∞ u1(k) = 0. Since

systems Σ1-Σ3 are exponentially stable for all ε ∈ (0, cm),
it follows that η̂(k), η2(k), η3(k), ηa(k), z(k) converge to
zero asymptotically, implying that limk→∞ y(k) = 0. This
completes the proof of Theorem 1.

5. NUMERICAL EXAMPLE

The effectiveness of the proposed scheme is verified via
numerical examples. Consider the following linear stable
and non-minimum phase system

H(z) =
0.1704z − 0.1885

z2 − 1.774z + 0.8187
. (28)

To evaluate the performance of the proposed method, a
sinusoidal disturbance with a different frequency is added
during algorithm implementation, it has the form

d(k) =

{
2 sin(ωdk), if k < 1500

2 sin(0.7× ωdk), if k ≥ 1500
(29)

where ωd = 0.1 [rad/s]. Note that ωd = ωc × T , where
the sampling time T is chosen as 0.1 s. Set the controller
parameters as ε = 0.3, ρ = 0.5, α1 = 0.1 and α2 = 3. All
closed-loop system states have been simulated starting at

zero initial conditions, except for θ̂, whose initial condition
is (−1, 1).

Applying the proposed controller, the simulation results
are shown in Fig. 2-4. In the interval k ∈ [0, 1500),
the plant is affected by a sinusoidal disturbance with
a frequency of ωd = 0.1 [rad/s]. Moreover, a change
of disturbance occurs at k = 1500. Fig. 2 shows the
performance of the auxiliary controller u in response
to changes in the external disturbance. Fig. 3 and Fig.
4 demonstrate the ability of the control input ud to
compensate for the external disturbance d, and regulate
the system output y to zero.
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Fig. 2. The auxiliary controller u.

Fig. 3. Comparison of disturbance d and control input ud.
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Fig. 4. The output y of plant.

Finally, we demonstrate the robustness of the proposed
algorithm by analyzing the impact of a noisy output
measurement (polluted by an additive Gaussian noise with
zero mean and 0.1 variance). Simulation result is shown in
Fig. 5. The result indicates that the proposed controller is
not sensitive to output measurement noise.
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Fig. 5. The output y of plant perturbed by an additive
Gaussian noise.

6. CONCLUSION

In this paper, the robust output regulation problem is
addressed for uncertain discrete-time systems, under the
effect of a sinusoidal signal that only the frequency in-
formation is assumed to be known. A novel AFC-based
method is proposed to remove the SPR-like condition.
Stability analysis shows that the trajectories of the closed-
loop system are bounded and the output of system asymp-
totically converges to zero. Finally, a numerical example
is given to illustrate the effectiveness of proposed control
algorithm. Future work will be aimed to extend the results
to multiple sinusoids case for MIMO uncertain systems.
Meanwhile, we acknownledge that the prior information
on the frequency of external disturbance should be relaxed
in the future work. Currently we are able to show that
the proposed algorithm is robust with respect to small
frequency error, but the integration of a proper frequency
estimator is under investigation.
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Finally, we demonstrate the robustness of the proposed
algorithm by analyzing the impact of a noisy output
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Fig. 5. The result indicates that the proposed controller is
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Appendix A. PROOF OF PROPOSITION 4

It should be noted that the system Σ2 is Input-to-state

stable if ∆ θ̂(·) ∈ L∞ for all ε ∈ (0, cε3). Letting V21(η2) =
2ε−1η⊤2 Peη2, along the trajectory of the η2-subsystem, we
have

∆V21(k) =
2

ε
[η⊤2 (k + 1)Peη2(k + 1)− η⊤2 (k)Peη2(k)]

=
2

ε
[−εη⊤2 (k)ΓΓ⊤η2(k) + 2η⊤2 (k)E

⊤Peηa(k + 1)∆ θ̂(k)

+ ∆ θ̂⊤(k)η⊤a (k + 1)Peηa(k + 1)∆ θ̂(k)].

Utilizing the Proposition 1, Lemma 2 and Young’s inequal-
ity, adding and subtracting the term |e2|2, we get

∆V21(k) ≤− |e2(k)|2 −
1

2
∥η2(k)∥2 + γ2

21∥ηa(k + 1)∥2.

One concludes that the L2-gain of the η2-subsystem in

system Σ2 does not exceed γ21 := ερ
√

8c̄2e c̄
2
pe

+ 2εc̄pe for

all ε ∈ (0, cε3).

Next, defining V22(ηa) = trace[η⊤a Peηa], along the trajec-
tory of the ηa-subsystem, we have

∆V22(k) = trace[η⊤a (k + 1)Peηa(k + 1)− η⊤a (k)Peηa(k)]

≤ −1

2
ε∥ηa(k)∥2 + (2εc̄2pe

c̄2e + ε2c̄pe
)|ν2(k)|2.

Finally, define the Lyapunov function candidate V2(η2, ηa) =
V21 + λ1(ε)V22 for system Σ2, where λ1(ε) is a positive
constant. It follows that the time difference of V2 along
trajectories of System Σ2 yields

∆V2(k) ≤ −|e2(k)|2 −
1

2
∥η2(k)∥2 −

1

4
ελ1(ε)∥ηa(k)∥2

+ λ̄1(ε)∥ηa(k)∥2 + ε2γ2
2 |ν2(k)|2

for all (θ̂(·), ε) ∈ Θ × (0, cε3). Let λ̄1(ε) := − 1
4ελ1(ε) +

8ε2c̄4e c̄
2
pe
ρ2 +2ε3ρ2c̄pe c̄

2
e +8ε3c̄3e c̄

2
pe
ρ2 +2ρ2ε4c̄ec̄pe = 0, we

have

∆V2(k) ≤ −λ2(ε)(∥η2(k)∥2 + ∥ηa(k)∥2)− |e2(k)|2

+ ε2γ2
2 |ν2(k)|2

in which γ2
2 = 64εc̄5e c̄

4
pe
ρ2 + 48εc̄4e c̄

3
pe
ρ2 + 16ε2ρ2c̄2pe

c̄2e +

2ε3ρ2c̄pe+64c̄4e c̄
6
pe
ρ2+48ε2c̄3pe

c̄3eρ
2+8ε3c̄ec̄

2
pe
ρ2+2ε2ρ2c̄ec̄pe+

8ερ2c̄3e c̄
2
pe

and λ2(ε) := min{ 1
2 ,

1
4ελ1(ε)}. Define a quadratic,

positive definite and decrescent storage function

W2(η2, ηa) := V2(η2, ηa)

which satisfies

∆W2(k) ≤− λ2(ε)∥η2(k)∥2 − λ2(ε)∥ηa(k)∥2

− |e2(k)|2 + ε2γ2
2 |ν2(k)|2.

As a result, the system Σ2 is strictly dissipative with
respect to the supply rate q2(ν2, e2) = ε2γ2

2 |ν2|2− |e2|2 for
any ε ∈ (0, cε3). Hence, Σ2 is exponentially stable when
ν2 = 0, and has a finite L2-gain between ν2 and e2 which
does not exceed εγ2 for any ε ∈ (0, cε3).

Appendix B. PROOF OF PROPOSITION 5

The system Σ3 is the cascade of two exponentially stable
linear systems. Define the Lyapunov function candidate
V3(η3, z) = η⊤3 Peη3+λ3(ε)z

⊤P0z for Σ3, in which λ3(ε) >
0 is a constant will be designed later. For any p ∈ P, we
have

∆V3(k) = η⊤3 (k + 1)Peη3(k + 1) + λ3z
⊤(k + 1)P0z(k + 1)

− η⊤3 (k)Peη3(k)− λ3z
⊤(k)P0z(k)

≤ −ε

2
∥η3(k)∥2 −

λ3

2
∥z(k)∥2

+ (2εc̄2pe
c̄2e∥C(p)∥2 + ε2c̄pe

∥C(p)∥2)∥z(k)∥2

+ (2λ3ε
2c̄2p0

∥A(p)∥2∥Π(p)∥2 + λ3ε
2c̄p0

∥Π(p)∥2)|ν3(k)|2

where we used Assumption 1, Lemma 2 and Young’s
inequality. Letting

cc := max
p∈P

∥C(p)∥, cπ := max
p∈P

∥Π(p)∥, ca := max
p∈P

∥A(p)∥

we obtain

∆V3(k) ≤− ε

4
∥η3(k)∥2 −

λ3

4
∥z(k)∥2 − ε

8
|e3(k)|2

− (
λ3

4
− 2εc̄2e c̄

2
pe
c2c − ε2c̄pe

c2c −
εc2c
4

)∥z(k)∥2

+ (2λ3ε
2c2ac̄

2
p0
c2π + λ3ε

2c̄p0
c2π)|ν3(k)|2.

Set λ4(ε) := 8c̄2e c̄
2
pe
c2c +4εc̄pe

c2c + c2c , λ3(ε) := ελ4(ε), then

∆V3(k) ≤− ε

8
λ5(ε)∥η3(k)∥2 −

ε

8
λ5(ε)∥z(k)∥2 −

ε

8
|e3(k)|2

+
ε

8
(16λ4(ε)ε

2c2ac̄
2
p0
c2π + 8λ4(ε)ε

2c̄p0
c2π)|ν3(k)|2

where λ5(ε) := min{2, 2λ4(ε)}. Define the quadratic, pos-
itive definite and decrescent storage function W3(η3, z) =
8ε−1V3(η3, z), which satisfies

∆W3(η3, z) ≤− λ5(ε)∥η3(k)∥2 − λ5(ε)∥z(k)∥2

− |e3(k)|2 + ε2γ2
3 |ν3(k)|2.

The system Σ3 can be shown to be strictly dissipative with
respect to the supply rate q3(ν3, e3) = ε2γ2

3 |ν3|2− |e3|2 for
any ε ∈ (0, cε3), where γ

2
3 := 16λ4(ε)c

2
ac̄

2
p0
c2π+8λ4(ε)c̄p0c

2
π.

As a result, system Σ3 is exponentially stable when ν3 = 0,
and has a finite L2-gain between ν3 and e3 which does not
exceed εγ3 for any ε ∈ (0, cε3).


